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Summary A sole pathological event leading to Alzheimer’s disease (AD) remains undiscovered in spite of decades of
costly research. In fact, it is more probable that the causes of AD are the result of a myriad of intertwining pathologies.
However, hope remains that a single awry event could lead to the many pathological events observed in AD brain
tissues thereby creating the presentation of simultaneous pathologies. Age-related vascular diseases, which include an
impaired blood–brain barrier (BBB), are a common denominator associated with various degrees of dementia,
including AD. Recently, a key finding not only demonstrated the anomalous presence of immunoglobulin (Ig) detection
in the brain parenchyma of AD tissues but, most importantly, specific neurons that showed degenerative, apoptotic
features contained these vascular-derived antibodies. In addition, subsequent studies detected classical complement
components, C1q and C5b-9, in these Ig-positive neurons, which also were spatially more associated with reactive
microglia over the Ig-negative neurons. Thus, it is possible that the mere presence of anti-neuronal autoantibodies in
the serum, whose importance had been previously dismissed, may be without pathological consequence until there is a
BBB dysfunction to allow the deleterious effects of these autoantibodies access on their targets. Hence, these
observations suggest autoimmunity-induced cell death in AD.

�c 2004 Elsevier Ltd. All rights reserved.
Autoimmunity

The immune system protects the body from poten-
tially harmful substances (antigens), such as for-
eign microorganisms, toxins, etc. The antigens
are presented to cells that make specific antibod-
ies, which ultimately lead to the destruction of
the antigens. Unfortunately, these antigens may in-
clude ‘‘self’’ antigens leading to inappropriate
destruction of normal body tissues (autoimmunity).
Hence, normally occurring ‘‘harmless’’ host pro-
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teins can now become the target of the immune
system. Autoimmunity can account for many hu-
man diseases, such as Graves’ disease, systemic lu-
pus erythematosus, multiple sclerosis, rheumatoid
arthritis, scleroderma, myasthenia gravis, fibrom-
yalgia and others. Each is a disorder of the immune
system in which the immune cells target and attack
the body’s own cells. Even though the causes of the
autoimmune disorders are not known, the specific
targets of the autoantibodies characterize each
autoimmune disease. For example, myasthenia
gravis is a well-known human autoimmune disease
where the nerve impulse to initiate or sustain
movement does not adequately reach the muscle
ved.
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cells. Specifically, the body mounts an attack
against the receptor of the neurotransmitter ace-
tylcholine, which sends signals from the nerves to
the muscles. The autoimmune autoantibodies bind
to these receptors preventing the transmission of
the signal and causes muscle weakness [1–4].

Autoantibodies can also affect the central nerv-
ous system (CNS) to react with neurons in neurolog-
ical diseases including Huntington’s chorea [5],
Sydenham’s chorea [6], cerebral lupus [7,8], multi-
ple sclerosis [9,10], in an experimental allergic
encephalomyelitis (EAE) [11], and in Rasmussen’s
encephalitis (RE) [12–14]. For example, RE is an
autoimmune progressive childhood disease charac-
terized by severe epileptic seizures, hemiplegia,
dementia and inflammation of the brain associated
with progressive destruction of a single cerebral
hemisphere due to the undesired presence of auto-
antibodies specific to the glutamate receptor 3
(GluR3), in the brain. In this case, immunoglobulin
G (IgG) immunoreactivity was observed in neurons
and in their processes in association with comple-
ment membrane attack complex immunoreactivity
leading to neuronal damage [13,14]. Remarkably,
these findings are in parallel to pathological proc-
esses observed in myasthenia gravis [1–4] and in
EAE [12] and recently in Alzheimer’s disease (AD)
[15,16].
Blood–brain barrier dysfunction

As mentioned, autoimmune diseases can include
the CNS. However, in order for any of the immuno-
globulins to penetrate the brain, there must be an
impaired ability to maintain the integrity of the
blood–brain-barrier (BBB), a major modulator or
filter of nutrient delivery to the CNS that is prima-
rily constructed of endothelial cells and astrocytes
[17–19]. Disturbances in the BBB can occur in head
trauma [20], and conditions commonly associated
with aging, such as atherosclerosis [21], hyperten-
sion [22], cerebrovascular ischemia and stroke
[23–25]; all of which have been found to be risk
factors for AD. In addition, altered BBB has been
associated with mutations of the apolipoprotein E
(ApoE) gene [21,26], which lead to extensive
extravasation of serum IgG into discrete cortical
and subcortical locations, including the hippocam-
pus [27].

Indeed, an impaired BBB can have disastrous ef-
fects in the brain; however, a more profound
change in BBB permeability is associated with AD.
Although one of the neuropathological features of
AD in amyloid plaques in the cerebral cortex, amy-
loid deposits have been observed in microvessels
and are often associated with degenerating endo-
thelium (decreased mitochondrial content, in-
creased pinocytotic vesicles), damaged smooth
muscle cells and pericytes, and are associated with
various abnormal basement membrane alterations
(focal necrosis, reduplication, increased collagen
content, disintegrating), which are all components
of an impaired BBB [24,28–37] strengthening the
possibility that the ‘‘major pathological role of b-
amyloid in AD may be to inflict vascular damage’’
and hence, impair BBB function.

In AD, concentrations of albumin and hapto-
globulin are significantly higher in the cerebrospi-
nal fluid (CSF) due to increased BBB permeability
[22,38–41]. Consequences of a faulty BBB can
lead to the leakage of neurotoxic plasma sub-
stances into the neuropil, resulting in plaque for-
mation and neurofibrillary degeneration
[23,26,42–44]. Experimentally, amyloid chroni-
cally infused into the circulation of rats, in which
the BBB was breached, was localized in the brain
parenchyma [45]. All of these data, and many
more, exemplify the necessity in maintaining a
functionally intact BBB.
The AD autoimmune hypothesis

Immunoglobulins (Ig) have been detected in AD
serum, CSF and in amyloid plaques and are associ-
ated with vessel-associated amyloid, which has been
attributed due to a faulty BBB [38,40,46–48]. Fur-
thermore, several additional reports have demon-
strated the presence of Igs in neurons [46,48–50]
but none of those studies provided specifics as to
percentage of neurons positive for Ig in the tissues,
subcellular localization of the Ig labeling, and so
forth. Unfortunately, the significance of neuronal
autoantibodies has been previously dismissed lar-
gely due to similar amounts of autoantibodies in
the ‘‘control’’ non-AD and AD serums, which as
an example, also labeled fetal DRG cultured neu-
rons similarly [46,48,51,52]. Therefore, according
to these studies, serum levels of neuronal autoan-
tibodies alone would not be a good indicator of dis-
ease risk. Hence, the presence and relevance of
these autoantibodies appeared ‘‘inconsequential’’.

However, in spite of those reports, the presence
of neuronal autoantibodies in ‘‘combination’’ with
a BBB dysfunction as an important part of AD neu-
ropathology was presented in a recent study based
on several key observations [15,16]. Briefly, there
was a significant increase in parenchymal Ig
immunolabeling in the entorhinal cortex and
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460 D’Andrea
hippocampus of AD brains as compared to age-
matched controls [15]. The labeling was associated
with particular vessels in the many of the control
Figure 1 Pathological +Ig-neuron panel. +Ig-neurons (larg
observed in AD brain tissues. Ig immunolabeling is observed
affected neurons (d–e). Some neurons show stronger Ig im
while some +Ig-neurons appear to maintain their ‘‘norma
degenerating apoptotic features such as cell atrophy (large
arrowheads, a, c, h–i), condensed, pyknotic nuclear chromat
not apparent (small arrows, a–c, g–l). It is remarkable that in
b, d–e). Almost all of the neighboring �Ig-neurons have ‘‘nor
b–l), normally appearing nuclear chromatin (a–l), and even
arrows, b, e). Bar = 25 lm. Reproduced by the kind permissi
tissues, in contrast to the intense Ig labeling in
the AD tissues that was present throughout most
of the parenchyma [15].
e arrowheads) and �Ig-neurons (small arrowheads) are
diffusely in the perikaryon and nucleoplasm of several

munoreactivity (a–c, g–l). It is interesting to note that
l’’ morphology (large arrows, b–c, d–g), others show
arrowheads, a–c, g–l), degenerating processes (small

in to the point at which the normal nuclear appearance is
several images, all but the nucleolus is +Ig (small arrows,

mal’’ morphology, with prominent nucleoli (large arrows,
the lack of Ig immunoreactivity in the lipofuscin (open

on of Elseiver Press from Brain Res 2003;982:19–30.
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Many neurons had Ig-immunolabeling that was
significantly increased in the AD as compared to
the age-matched control brain tissues. Surpris-
ingly, as many as 40% of the Ig-positive neurons
showed morphological signs of neurodegeneration
in contrast to the Ig-negative neurons that did
not show these degenerative criteria (Fig. 1) [15].
Furthermore, many of the neurodegenerative,
Ig-positive neurons also expressed activated cas-
pase-3, which is a key enzyme of committed apop-
totic cell death [15].

Subsequent studies investigated the inflamma-
tory profile of these Ig-positive neurons [16]. These
studies detected the presence of C1q, a marker of
the classical complement pathway [53,54], as well
as C5b-9, a marker of the terminal step in the com-
plement pathway and representing the membrane
attack complex [54–56] in these Ig-positive neu-
rons [16]. Furthermore, reactive microglia, the
CNS macrophage, were spatially more associated
with the Ig-positive neurons over the Ig-negative
neurons suggesting neuronal cell death via the clas-
sical complement pathway [16].

These data implied that the anomalous presence
of these autoantibodies in the brain might be asso-
ciated with neuronal death. Therefore, either the
Igs bind to their antigens on these ‘‘selective’’
neurons that subsequently degenerate, or the Ig-
positive labeling occurs subsequent to the degener-
ating neurons to bind to antigens expressed as the
cell degenerates. Although the latter is plausible,
the data suggested the former to be more favora-
ble because the Ig-negative neurons did not display
morphological degenerative features or activated
caspase 3 labeling. All of the degenerative neurons
were Ig-positive suggesting a link between Ig immu-
noreactivity and degeneration [15]. In addition, not
all of the Ig-positive neurons were degenerating
inferring that morphological signs of degeneration
and activated caspase 3 labeling are subsequent
to Ig-positive immunoreactivity. Furthermore, Ig-
associated cell death is not a novel process and
has been described previously in many autoimmune
diseases [1,4,12–14,27,47,57].

In summary, these data in the context of the
underlying mechanisms of many autoimmune dis-
eases indicated that AD is another autoimmune dis-
ease and provides a vital link between vascular
pathology (altered BBB function) and neuronal cell
death. Furthermore, these data suggest that BBB
dysfunction precedes neuronal degeneration and
dementia, which had been similarly proposed [58].

It is the hope that many aspects of this hypoth-
esis will be explored in the future. Independent
labs should validate the data and perhaps extend
these observations to non-AD neurodegenerative
disorders, such as stroke, to determine the associ-
ation of Ig-positive neurons with neuronal death.
New AD therapeutic opportunities should also be
considered or actually borrowed from those treat-
ments of other autoimmune diseases that include
plasma exchange therapy (PET). For example,
some RE children showed improvement following
PET that removed circulating GluR3 antibodies
[13], thereby validating proof-of-concept that
anti-GluR3 gained access to the CNS where it ex-
erted deleterious effects. Certainly other medici-
nal therapies designed to deter the autoimmune
system should also benefit.

However, perhaps the most important upcoming
contribution will be the discovery of the antigen(s)
to which the neuronal autoantibodies bind. It is of
course possible and most likely that those ‘autoan-
tibodies’ might have been initially specific to a
non-neuronal epitope, which inconsequentially
bound to a neuronal-like epitope once entry into
the CNS. Regardless, such a discovery will open
many wonderful opportunities such as blocking
the binding to its antigen, blocking entry into the
brain, binding a pseudo-antigen to the antibody
to render it impotent, assay development and so
forth to hopefully lead to a cure for AD. For exam-
ple, patients with type II diabetes are at increased
risk of cognitive impairment and coupled with an
increased permeability of the BBB [59] similar neu-
rodegenerative mechanisms may also be present.

Certainly several prognostic and diagnostic para-
digms could be available. Understanding the integ-
rity of BBB through computed tomography (CT),
computerized axial tomography (CAT) or magnetic
resonance imaging (MRI) imaging scans as a ‘‘com-
bined risk factor’’ with the presence of anti-neur-
onal antibodies may help the clinician propose
prognosis to the patient. Equally important will
be the affinity and avidity of the anti-neuronal
antibody(s), which may explain why BBB dysfunc-
tion will not always lead to AD. The consequences
of a dysfunctional BBB are serious and should pro-
vide an appreciation of tying together vascular
damage with neuronal death. Perhaps this AD auto-
immune hypothesis will provoke extended studies
to propose strategies to maintain a functional BBB
as well as characterize the origin of these anti-
neuronal antibodies to render them ineffective if
and when the BBB becomes dysfunctional.
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